CCCCCCCCCCCCC

Application Note
Document No.: AN1162

APM32F402_F403 RTC Timed Wake-up from
STOP Mode

Version: V1.0

Document No.: AN1162

Introduction

This Application Note aims to guide users on how to use the Real-Time Clock (RTC) function to
achieve timed wake-up from the STOP low-power mode on the APM32F402/F403
microcontrollers. The document details various low-power modes of the APM32F402 and
provides specific code examples, configuration steps, and verification methods for implementing
the RTC wake-up function to help users effectively reduce power consumption in practical

applications.

This application note applies to the Geehy APM32F402/APM32F403. The APM32F402 is used
as an example throughout this document.

www.geehy.com Page 1

http://www.geehy.com

Document No.: AN1162
Contents
1 INtFOAUCHION ...ttt ————— 1
2 Introduction to LOW-power Mode......... e er e er s s 3
2.1 I e 4 oo =PRSS 3
22 STOP MOTE ...ttt ettt et b e b et e sbb e e sab e e sas e e sab e e sabeeebeeenneeenees 4
23 STANDBY MOUEeiiutieiieeie et rie ettt eeste s te e te e te e teeteeseeesseeteenseeteenseesseeaseenseenseenseenseens 5
3 Implementation of RTC Timed Wake-up for STOP Mode.........ccccciiicciiimnnnninccseennenssnnnns 6
3.1 RTC alarm configurationoooiiii i 6
3.2 RTC alarm interrupt configurationoooiii e 7
3.3 IO configuration before entering the STOP MOdecccuviiiiiiiiiiiece e 8
3.4 ENtEr STOP MOGE ...ttt sttt st e sbe e sab e sane e 9
4 Function Verification ... 10
5 LR LY V=] o] o T o o3 o 12

www.geehy.com

Page 2

http://www.geehy.com

Document No.: AN1162

2

Introduction to Low-power Mode

Arranged from highest to lowest power consumption, the APM32F402 has four operating modes:
RUN, SLEEP, STOP, and STANDBY. After power-on reset, when the APM32F402 is in the
running state, if the kernel does not need to continue running, users can choose to enter the
three low-power modes (SLEEP, STOP, STANDBY) to reduce power consumption. In these

three modes, the power consumption, wake-up time, and wake-up sources are different. Users

need to select the best low-power mode according to the application requirements.

Table 1 Difference among "SLEEP Mode, STOP Mode and STANDBY Mode"

Voltage Effect on 1.2V | Effect on VDD
Mode Description Entry method Wake-up mode
regulator area clock area clock
Arm® Call WFI Anv int t o) Only the core N
COI’teX®-M4F core instruction ny interrup n one
clock is disabled,
stops, and all
and it has no
Sleep peripherals
)) Call WFE effect on other
including the core Wake-up event On None
peripheral are still
clocks
working
PDDS_CFG and Enable or HSICLK and
All clocks have LPDSCFG bits + be in Disable all clocks HSECLK
Stop Any external interrupt
stopped SLEEPDEEP bit low-power of 1.2V area oscillators are
+ WFI or WFE mode disabled
Rising edge of WKUP
PDDS_CFG bit
pin, RTC alarm event,
+ SLEEPDEEP 1.2V power is
Standby 1.2V power is off external reset on OFF Standby
bit + WFI or off
NRST pin, IWDT
WFE
reset
2.1 SLEEP mode

In SLEEP mode, only the kernel clock is turned off, and the kernel stops running, but all on-chip

peripherals and kernel peripherals still operate normally. There are two ways to enter the SLEEP

mode, and the way of entering also determines the way of waking up from the SLEEP mode,
namely WFI (Wait For Interrupt) and WFE (Wait For Event).

Table 2 Characteristics of SLEEP Mode

Characteristics

Description

Enter

first and then enters the SLEEP mode immediately.

Enter the SLEEP mode immediately by executing the WFI or WFE instruction; when
SLEEPONEINT is set to 0 and the WFI or WFE instruction is executed, enter the SLEEP
mode immediately; when SLEEPONEINT is set to 1, the system exits the interrupt program

www.geehy.com

Page 3

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

Wake-up

If WFI instruction is executed to enter the SLEEP mode, wake up by any interrupt; if WFE

instruction is executed to enter the SLEEP mode, wake up by an event.

S| The core stops working, all peripherals are still running, and the data in the core registers and
eep
memory before sleep are saved.

Wakeup delay | None

Characteristics Description

After wake-up program after WFI instruction; to wake up by event, directly execute the program after WFE

To wake up by interrupt, first enter the interrupt, exit the interrupt, and then execute the

instruction.

2.2

In the APM32F402, we can use the PMU_EnterSleepMode function to enter the SLEEP mode.
Its parameters PMU_SLEEPENTRY_WFI and PMU_SLEEPENTRY_WFE determine how we
enter and wake up from the SLEEP mode, representing interrupt and event respectively.

STOP mode

In STOP mode, on the basis of the SLEEP mode, all other clocks are further turned off, so all
peripherals stop working. However, since part of the power supply in the 1.2V area is not turned
off and the information in the kernel registers and memory is retained, after waking up from the
STOP mode and restarting the clock, the code can continue to be executed from the point where
it stopped last time. The STOP mode can be woken up by any external interrupt (EINT). In the
STOP mode, the voltage regulator can be selected to operate in either the normal mode or the
low-power mode.

Table 3 Characteristics of STOP Mode

Characteristics Description

Enter LPDSCFG bit in the register PMU_CTRL is set to 0, the voltage regulator operates in the normal

Set the SLEEPDEERP bit in the core register to 1 and the PDDS_CFG bit in the register PMU_CTRL to

0, and then execute the WFI or WFE instruction to immediately enter the STOP mode; when the

mode; when the LPDSCFG bit in the register PMU_CTRL is set to 1, the voltage regulator operates in

the low-power mode.

Wake-up

If WFI instruction is executed to enter the SLEEP mode, wake up by any interrupt; if WFE instruction is

executed to enter the SLEEP mode, wake up by an event.

The core and the peripheral will stop working, and the data in the core register and memory before

stop will be saved.

Wakeup delay | Wake-up time of HSICLK oscillator + wake-up time of voltage regulator from low-power mode.

After wake-up

To wake up by interrupt, first enter the interrupt, exit the interrupt, and then execute the program after

WFl instruction; to wake up by event, directly execute the program after WFE instruction.

In the APM32F402, we can enter the STOP mode through the PMU_EnterSTOPMode function.
Its parameter 1 determines whether the voltage regulator is in the normal mode
(PMU_REGULATOR_ON) or the low-power mode (PMU_REGULATOR_LOWPOWER). Its
parameter 2 determines whether to enter the STOP mode through an interrupt or an event,

www.geehy.com Page 4

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

which are PMU_STOP_ENTRY_WFI and PMU_STOP_ENTRY_WFE respectively.

2.3 STANDBY mode

In addition to turning off all clocks, the STANDBY mode also completely turns off the power
supply in the 1.2V area. That is to say, after waking up from the STANDBY mode, there is no
running record of the previous code. We can only reset the chip, re-detect the boot conditions,
and execute the program from the beginning. There are four ways to wake it up, namely the
rising edge of the WKUP (PAO) pin, the RTC alarm event, the reset of the NRST pin, and the
IWDG (Independent Watchdog) reset. The various characteristics of the STANDBY mode are
shown in the following table:

Table 4 Characteristics of STANDBY Mode

Characteristics Description

SLEEPDEEP bit of the core register is set to 1, PDDS_CFG bit of the register PMU_CTRL is
Enter setto 1, WUEFLG bit is set to 0 and when WFI or WFE instruction is executed, it will enter the
STANDBY mode immediately.

Wake up by rising edge of WKUP pin, RTC alarm, wake-up, tamper event or NRST pin

Wake-up
external reset and IWDT reset.
Standby The core and the peripheral will stop working, and the data in the core register and memory
will be lost.
Wakeup delay Chip reset time.
After wake-up The program starts executing from the beginning.

www.geehy.com Page 5

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

3 Implementation of RTC Timed Wake-up for STOP Mode

According to the previous description, the STOP mode can be woken up by any interrupt. In the
EINT section, we can see that the RTC Alarm event is mapped to the EINT 17 line. Therefore,
the STOP mode can be woken up periodically by configuring the RTC alarm.

3.1 RTC alarm configuration

In the RTC alarm configuration, we use the internal LS| as the RTC clock source, configure a
5-second alarm, and associate the RTC Alarm event with the EINT 17 line.

Note: Before implementing the code, the alarm time macro ALARM_TIME_INTERVAL needs to be defined first.
#tdefine ALARM_TIME_INTERVAL (5U)

The following is the RTC initialization configuration code:

void RTC_Config Init(void)

{
EINT_Config T EINT_Configure;

/* Enable BKP and PWR clocks */

RCM_EnableAPB1PeriphClock (RCM_APB1_PERIPH_PMU | RCM_APB1_PERIPH_BAKR);
/* Allow access to the backup domain */

PMU_EnableBackupAccess();

/* Reset backup domain */

BAKPR_Reset();

/* Enable LSI */

RCM_EnablelSI();

/* Wait until LSI is ready */
while(RCM_ReadStatusFlag(RCM_FLAG_LSIRDY) == RESET);
/* Select LSI as the RTC clock source */
RCM_ConfigRTCCLK(RCM_RTCCLK_LSI);

/* Enable RTC clock */

RCM_EnableRTCCLK();

/* Wait for RTC register synchronization */

RTC_WaitForSynchro();

/* Wait for the last write operation on the RTC register to complete */
RTC WaitForlLastTask();

/* Enable RTC alarm interrupt */

RTC _EnableInterrupt(RTC_INT_ALR);

/* Wait for the last write operation on the RTC register to complete */
RTC WaitForLastTask();

www.geehy.com Page 6

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

/* Set the RTC prescaler value: Set the RTC period to 1s */
RTC_ConfigPrescaler(40000);

/* Wait for the last write operation on the RTC register to complete */
RTC WaitForLastTask();

/* Set the RTC counter value to @ */

RTC_ConfigCounter(oU);

/* Wait for the last write operation on the RTC register to complete */
RTC WaitForLastTask();

/* Set the RTC alarm value to 5s */
RTC_ConfigAlarm(ALARM_TIME_INTERVAL);

/* Wait for the last write operation on the RTC register to complete */
RTC WaitForlLastTask();

/* EXTI configuration */

EINT_Reset();

EINT_Configure.line = EINT_LINE_17;
EINT_Configure.lineCmd = ENABLE;
EINT_Configure.mode = EINT_MODE_INTERRUPT;
EINT_Configure.trigger = EINT_TRIGGER_RISING;
EINT_Config(&EINT_Configure);

/* Flag clearing */
RTC_ClearStatusFlag(RTC_FLAG_ALR);
EINT_ClearIntFlag(EINT_LINE_17);

/* NVIC configuration */
NVIC_EnableIRQRequest(RTC_Alarm_IRQn, 1, 1);

3.2 RTC alarm interrupt configuration

In the RTC alarm interrupt service function, after detecting the RTC alarm interrupt, we first clear
the alarm flag and the flag of EINT 17, and then reset the RTC counter value and the alarm value
to implement a periodic 5-second alarm. The following is the code for the RTC alarm interrupt
service function:

void RTC_Alarm_IRQHandler(void)
{
if(RTC_ReadIntFlag(RTC_INT_ALR) == SET)
{
/* Clear the RTC alarm and EXTI_Linel7 interrupt flags */
RTC_ClearIntFlag(RTC_INT_ALR);
EINT ClearIntFlag(EINT_LINE_17);

www.geehy.com Page 7

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

3.3

/* Wait for RTC register synchronization */

RTC_WaitForSynchro();

/* Wait for the last write operation on the RTC register to complete
*/

RTC WaitForLastTask();

/* Set the RTC counter value to @ */

RTC_ConfigCounter(oU);

/* Wait for the last write operation on the RTC register to complete
*/

RTC WaitForlLastTask();

/* Set the RTC alarm value to 5s */

RTC_ConfigAlarm(ALARM_TIME_INTERVAL);

/* Wait for the last write operation on the RTC register to complete
*/

RTC WaitForLastTask();

10 configuration before entering the STOP mode

To achieve the lowest power consumption in the STOP mode, it is recommended to configure all
unused I/O ports as analog input mode before entering this mode. The following is the code for
GPIO initialization configuration:

void GPIO ALL Init(void)

{
GPIO_Config T GPIO_Configure;

/* Enable all GPIO clocks */
RCM_EnableAPB2PeriphClock (RCM_APB2_PERIPH_GPIOA | RCM_APB2_PERIPH_GPIOB |
RCM_APB2_PERIPH_GPIOC | RCM_APB2_PERIPH_GPIOD);

/* Configure IO for analog input. To achieve the lowest power consumption in
STOP mode, keep the PA@ interrupt wake-up function */

GPIO_Configure.mode = GPIO_MODE_ANALOG;

GPIO _Configure.pin = GPIO_PIN_ALL&(~GPIO_PIN_O);

GPIO_Config(GPIOA, &GPIO_Configure);

GPIO_Configure.pin = GPIO_PIN_ALL;
GPIO_Config(GPIOB, &GPIO_Configure);
GPIO Config(GPIOC, &GPIO Configure);

www.geehy.com Page 8

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

}

GPIO_Config(GPIOD, &GPIO_Configure);

/* Disable all GPIO clocks */
RCM_DisableAPB2PeriphClock (RCM_APB2_PERIPH_GPIOA | RCM_APB2_PERIPH_GPIOB

RCM_APB2_PERIPH_GPIOC | RCM_APB2_PERIPH_GPIOD);

Note: In this example, PAO is retained as an (optional) interrupt wake-up pin, so it is not configured as an analog input.
(1) After the configuration is completed, the peripheral clock of the GPIO can be disabled to further reduce

power consumption.

3.4 Enter STOP mode

The STOP mode can be entered by calling the library function. The following is the code of the
function to enter the STOP mode:

{

void System Enter_StopMode(void)

/* Enable PWR clock */
RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_PMU);

/* Clear wake-up flag */

PMU_ClearStatusFlag(PMU_FLAG_WUE);

/* Enter STOP mode */

PMU_EnterSTOPMode (PMU_REGULATOR_LOWPOWER, PMU_STOP_ENTRY_WFI);

www.geehy.com Page 9

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

4

Function Verification

In the main function, we first initialize the system and peripherals. After a 5-second delay, we call
the relevant function to enter the STOP mode. When the RTC alarm interrupt occurs after 5

seconds, the MCU will be woken up. After being woken up, the program will continue to execute

from the next instruction after entering the STOP mode. The following is the verification code for

the main function:

int

{

and

main(void)

NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_2);

BSP_HSI64_SysclkConfig();
BSP_Systick_Init(64);
BSP_LED_Init(GPIOB, GPIO PIN 8);
BSP_LED_Init(GPIOB, GPIO PIN 9);
BSP_KEY2_Init(BUTTON_MODE_EXTI);
BSP_USART1_Init(115200);

printf("SYSCLKFreq = %d\r\n", RCM ReadSYSCLKFreq());

// Delay for 5 seconds before entering the STANDBY mode to facilitate erasing
re-downloading of the program during reset

delay ms(1000);

delay ms(1000);

delay ms(1000);

delay_ms(1000);

delay_ms(1000);

printf("After a 5-second delay, enter Stop mode\r\n");
GPIO ALL_Init();

RTC_Config_Init();

System_Enter_StopMode();

// The clock needs to be reconfigured after waking up
BSP_HSI64 SysclkConfig();

BSP_Systick_Init(64);

BSP_LED Init(GPIOB, GPIO PIN 8);

BSP_LED_Init(GPIOB, GPIO_PIN 9);
BSP_KEY2_Init(BUTTON_MODE_EXTI);
BSP_USART1_Init(115200);

printf("Exti Stop mode\r\n");

while (1)

www.geehy.com Page 10

http://www.geehy.com

Document No.: AN1162 SEwguuecmR y

{
printf("RUNNING\r\n");
delay ms(200);

Through the serial port debugging tool, the following printed information can be observed, which
proves that the MCU is successfully woken up after entering the STOP mode for 5 seconds and
continues to execute the program. The following are the results printed by the serial port:

'lh sscom v5131$l:l/m2§£&%ﬁﬁc2§ = u X
B0 SOSE Sx & F¥F= AIE 28 EIRS

[22 56 - 54914]|+ EINNT NG

[22:66:66. 176] i+« #SYSCLEFreq = 64000000

[2z:57:00. 143] lfir+~—4After a S—second delay, enter Stop mode
[22:57:06. 132] {4 Exti Stop mode
INHI NG

[22:57:06. 332] {4 EURNLHG
[22:E7- 06 532]Ijr—#RINNTHG
[ez:57:08. 731]I+ BURNLHG
[22:57:06. 931] Ijr+— 4 RUNNIHG
[22:87:07. 131)T~ 4RUNNING
[22:67:07. 330]Ijr-+ #EUNFIHG
[22:57:07. 530 |jir+—4EURNING
[22:67:07. 729]I+ @ RUNFLHG
[22:57:07. 923] |jir~—4EURNING
[22:67:08. 128]It EUNFLHG
[22:57:08. 328]I+ RUNFING

[22:57:08. 528 s EUFFING

w0 | Tree | st g | FEER|C S5 [Endish gesa iR -
WIS (o JLink COC VT Port v |1 HEREET. fprpdnl | BMHBSIN| [iR [sebER (1000 ns/ I MEEEHRT
@ nnan|¢ ERE08E| M oMEBmsanT. a0 o P EER ko = .
[ATS T Drn Eig:[115200 =[[ebodefs

S0 R:Q97 COM4 B3 115200bps,8,1,None Nane

Note:

(1) After waking up from the STOP mode, the system clock will be restored to the internal high-speed clock
(HSI). The system clock and the peripherals that depend on the clock need to be reconfigured.

(2) In the example code, after waking up, the system clock, Systick, LED, buttons, and serial port are
reconfigured, and information is printed in the loop to verify the successful wake-up.

www.geehy.com Page 11

http://www.geehy.com

Document No.: AN1162

5 Revision History

Table 5 Document Revision History

Date

Version

Revision History

August, 2025

1.0

New

www.geehy.com

Page 12

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

Statement

This manual is formulated and published by Zhuhai Geehy Semiconductor Co., Ltd.
(hereinafter referred to as "Geehy"). The contents in this manual are protected by laws and
regulations of trademark, copyright and software copyright. Geehy reserves the right to correct
and modify this manual at any time. Please read this manual carefully before using the product.
Once you use the product, it means that you (hereinafter referred to as the "users") have known
and accepted all the contents of this manual. Users shall use the product in accordance with

relevant laws and regulations and the requirements of this manual.
1. Ownership of rights

This manual can only be used in combination with chip products and software products of
corresponding models provided by Geehy. Without the prior permission of Geehy, no unit or
individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this

manual for any reason or in any form.

The "Geehy" or "Geehy" words or graphics with "®" or "TM" in this manual are trademarks
of Geehy. Other product or service names displayed on Geehy products are the property of their

respective owners.
2. No intellectual property license
Geehy owns all rights, ownership and intellectual property rights involved in this manual.

Geehy shall not be deemed to grant the license or right of any intellectual property to users

explicitly or implicitly due to the sale and distribution of Geehy products and this manual.

If any third party’ s products, services or intellectual property are involved in this manual,
Geehy shall not be deemed to authorize users to use the aforesaid third party’ s products,
services or intellectual property, nor shall it be deemed to provide any form of guarantee for

third-party products, services, or intellectual property, including but not limited to any

www.geehy.com Page 13

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

non-infringement guarantee for third-party intellectual property, unless otherwise agreed in sales

order or sales contract of Geehy.
3. Version update

Users can obtain the latest manual of the corresponding products when ordering Geehy

products.

If the contents in this manual are inconsistent with Geehy products, the agreement in Geehy

sales order or sales contract shall prevail.
4. Information reliability

The relevant data in this manual are obtained from batch test by Geehy Laboratory or
cooperative third-party testing organization. However, clerical errors in correction or errors
caused by differences in testing environment are unavoidable. Therefore, users should
understand that Geehy does not bear any responsibility for such errors that may occur in this
manual. The relevant data in this manual are only used to guide users as performance

parameter reference and do not constitute Geehy's guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively
verify and test the applicability of Geehy products to confirm that Geehy products meet their own
needs, corresponding standards, safety or other reliability requirements. If losses are caused to
users due to the user's failure to fully verify and test Geehy products, Geehy will not bear any

responsibility.
5. Compliance requirements

Users shall abide by all applicable local laws and regulations when using this manual and
the matching Geehy products. Users shall understand that the products may be restricted by the
export, re-export or other laws of the countries of the product suppliers, Geehy, Geehy
distributors and users. Users (on behalf of itself, subsidiaries and affiliated enterprises) shall

agree and undertake to abide by all applicable laws and regulations on the export and re-export

www.geehy.com Page 14

http://www.geehy.com

Document No.: AN1162 SEnguuecmR y

of Geehy products and/or technologies and direct products.
6. Disclaimer

This manual is provided by Geehy on an "as is" basis. To the extent permitted by applicable
laws, Geehy does not provide any form of express or implied warranty, including without

limitation the warranty of product merchantability and applicability of specific purposes.

Geehy products are not designed, authorized, or guaranteed to be suitable for use as
critical components in military, life support, pollution control, or hazardous substance
management systems, nor are they designed, authorized, or guaranteed to be suitable for
applications that may cause injury, death, property, or environmental damage in case of product

failure or malfunction.

If the product is not labeled as "Automotive grade”, it means it is not suitable for automotive
applications. If the user's application of the product is beyond the specifications, application

fields, and standards provided by Geehy, Geehy will assume no responsibility.

Users shall ensure that their application of the product complies with relevant standards,
and the requirements of functional safety, information security, and environmental standards.
Users are fully responsible for their selection and use of Geehy products. Geehy will bear no
responsibility for any disputes arising from the subsequent design and use of Geehy products by

users.
7. Limitation of liability

In any case, unless required by applicable laws or agreed in writing, Geehy and/or any third
party providing this manual and the products on an "as is" basis shall not be liable for damages,
including any general or special direct, indirect or collateral damages arising from the use or no
use of this manual and the products (including without limitation data loss or inaccuracy, or
losses suffered by users or third parties), which cover damage to personal safety, property, or

environment, for which Geehy will not be responsible.

www.geehy.com Page 15

http://www.geehy.com

Geehy

SEMICONDUCTOR

8. Scope of application

The information in this manual replaces the information provided in all previous versions of

the manual.

©2025 Zhuhai Geehy Semiconductor Co., Ltd. All Rights Reserved

Geehy Semiconductor Co.,Ltd. w6999 @wwmgeenycom & infoagesny.com

http://www.geehy.com

	1Introduction
	2Introduction to Low-power Mode
	2.1SLEEP mode
	2.2STOP mode
	2.3STANDBY mode

	3Implementation of RTC Timed Wake-up for STOP Mode
	3.1RTC alarm configuration
	3.2RTC alarm interrupt configuration
	3.3IO configuration before entering the STOP mode
	3.4Enter STOP mode

	4Function Verification
	5Revision History

