
Contents

Application Note
Document No.: AN1162

APM32F402_F403_RTC Timed Wake-up from
STOP Mode

Version: V1.0

Document No.: AN1162

www.geehy.com Page 1

1 Introduction
This Application Note aims to guide users on how to use the Real-Time Clock (RTC) function to
achieve timed wake-up from the STOP low-power mode on the APM32F402/F403
microcontrollers. The document details various low-power modes of the APM32F402 and
provides specific code examples, configuration steps, and verification methods for implementing
the RTC wake-up function to help users effectively reduce power consumption in practical
applications.

This application note applies to the Geehy APM32F402/APM32F403. The APM32F402 is used
as an example throughout this document.

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 2

Contents

1 Introduction .. 1

2 Introduction to Low-power Mode ... 3

2.1 SLEEP mode ..3

2.2 STOP mode ..4

2.3 STANDBY mode ...5

3 Implementation of RTC Timed Wake-up for STOP Mode ...6

3.1 RTC alarm configuration .. 6

3.2 RTC alarm interrupt configuration ..7

3.3 IO configuration before entering the STOP mode ... 8

3.4 Enter STOP mode .. 9

4 Function Verification ..10

5 Revision History ...12

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 3

2 Introduction to Low-power Mode
Arranged from highest to lowest power consumption, the APM32F402 has four operating modes:
RUN, SLEEP, STOP, and STANDBY. After power-on reset, when the APM32F402 is in the
running state, if the kernel does not need to continue running, users can choose to enter the
three low-power modes (SLEEP, STOP, STANDBY) to reduce power consumption. In these
three modes, the power consumption, wake-up time, and wake-up sources are different. Users
need to select the best low-power mode according to the application requirements.

Table 1 Difference among "SLEEP Mode, STOP Mode and STANDBY Mode"

Mode Description Entry method Wake-up mode
Voltage

regulator

Effect on 1.2V

area clock

Effect on VDD

area clock

Sleep

Arm®

Cortex®-M4F core

stops, and all

peripherals

including the core

peripheral are still

working

Call WFI

instruction
Any interrupt On Only the core

clock is disabled,

and it has no

effect on other

clocks and ADC

clocks

None

Call WFE

instruction
Wake-up event On None

Stop
All clocks have

stopped

PDDS_CFG and

LPDSCFG bits +

SLEEPDEEP bit

+ WFI or WFE

Any external interrupt

Enable or

be in

low-power

mode

Disable all clocks

of 1.2V area

HSICLK and

HSECLK

oscillators are

disabled

Standby 1.2V power is off

PDDS_CFG bit

+ SLEEPDEEP

bit + WFI or

WFE

Rising edge of WKUP

pin, RTC alarm event,

external reset on

NRST pin, IWDT

reset

OFF Standby
1.2V power is

off

2.1 SLEEP mode
In SLEEP mode, only the kernel clock is turned off, and the kernel stops running, but all on-chip
peripherals and kernel peripherals still operate normally. There are two ways to enter the SLEEP
mode, and the way of entering also determines the way of waking up from the SLEEP mode,
namely WFI (Wait For Interrupt) and WFE (Wait For Event).

Table 2 Characteristics of SLEEP Mode

Characteristics Description

Enter

Enter the SLEEP mode immediately by executing the WFI or WFE instruction; when

SLEEPONEINT is set to 0 and the WFI or WFE instruction is executed, enter the SLEEP

mode immediately; when SLEEPONEINT is set to 1, the system exits the interrupt program

first and then enters the SLEEP mode immediately.

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 4

Wake-up
If WFI instruction is executed to enter the SLEEP mode, wake up by any interrupt; if WFE

instruction is executed to enter the SLEEP mode, wake up by an event.

Sleep
The core stops working, all peripherals are still running, and the data in the core registers and

memory before sleep are saved.

Wakeup delay None

Characteristics Description

After wake-up

To wake up by interrupt, first enter the interrupt, exit the interrupt, and then execute the

program after WFI instruction; to wake up by event, directly execute the program after WFE

instruction.

In the APM32F402, we can use the PMU_EnterSleepMode function to enter the SLEEP mode.
Its parameters PMU_SLEEPENTRY_WFI and PMU_SLEEPENTRY_WFE determine how we
enter and wake up from the SLEEP mode, representing interrupt and event respectively.

2.2 STOP mode
In STOP mode, on the basis of the SLEEP mode, all other clocks are further turned off, so all
peripherals stop working. However, since part of the power supply in the 1.2V area is not turned
off and the information in the kernel registers and memory is retained, after waking up from the
STOP mode and restarting the clock, the code can continue to be executed from the point where
it stopped last time. The STOP mode can be woken up by any external interrupt (EINT). In the
STOP mode, the voltage regulator can be selected to operate in either the normal mode or the
low-power mode.

Table 3 Characteristics of STOP Mode

Characteristics Description

Enter

Set the SLEEPDEEP bit in the core register to 1 and the PDDS_CFG bit in the register PMU_CTRL to

0, and then execute the WFI or WFE instruction to immediately enter the STOP mode; when the

LPDSCFG bit in the register PMU_CTRL is set to 0, the voltage regulator operates in the normal

mode; when the LPDSCFG bit in the register PMU_CTRL is set to 1, the voltage regulator operates in

the low-power mode.

Wake-up
If WFI instruction is executed to enter the SLEEP mode, wake up by any interrupt; if WFE instruction is

executed to enter the SLEEP mode, wake up by an event.

Stop
The core and the peripheral will stop working, and the data in the core register and memory before

stop will be saved.

Wakeup delay Wake-up time of HSICLK oscillator + wake-up time of voltage regulator from low-power mode.

After wake-up
To wake up by interrupt, first enter the interrupt, exit the interrupt, and then execute the program after

WFI instruction; to wake up by event, directly execute the program after WFE instruction.

In the APM32F402, we can enter the STOP mode through the PMU_EnterSTOPMode function.
Its parameter 1 determines whether the voltage regulator is in the normal mode
(PMU_REGULATOR_ON) or the low-power mode (PMU_REGULATOR_LOWPOWER). Its
parameter 2 determines whether to enter the STOP mode through an interrupt or an event,

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 5

which are PMU_STOP_ENTRY_WFI and PMU_STOP_ENTRY_WFE respectively.

2.3 STANDBY mode
In addition to turning off all clocks, the STANDBY mode also completely turns off the power
supply in the 1.2V area. That is to say, after waking up from the STANDBY mode, there is no
running record of the previous code. We can only reset the chip, re-detect the boot conditions,
and execute the program from the beginning. There are four ways to wake it up, namely the
rising edge of the WKUP (PA0) pin, the RTC alarm event, the reset of the NRST pin, and the
IWDG (Independent Watchdog) reset. The various characteristics of the STANDBY mode are
shown in the following table:

Table 4 Characteristics of STANDBY Mode

Characteristics Description

Enter

SLEEPDEEP bit of the core register is set to 1, PDDS_CFG bit of the register PMU_CTRL is

set to 1, WUEFLG bit is set to 0 and when WFI or WFE instruction is executed, it will enter the

STANDBY mode immediately.

Wake-up
Wake up by rising edge of WKUP pin, RTC alarm, wake-up, tamper event or NRST pin

external reset and IWDT reset.

Standby
The core and the peripheral will stop working, and the data in the core register and memory

will be lost.

Wakeup delay Chip reset time.

After wake-up The program starts executing from the beginning.

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 6

3 Implementation of RTC Timed Wake-up for STOP Mode
According to the previous description, the STOP mode can be woken up by any interrupt. In the
EINT section, we can see that the RTC Alarm event is mapped to the EINT 17 line. Therefore,
the STOP mode can be woken up periodically by configuring the RTC alarm.

3.1 RTC alarm configuration
In the RTC alarm configuration, we use the internal LSI as the RTC clock source, configure a
5-second alarm, and associate the RTC Alarm event with the EINT 17 line.

Note: Before implementing the code, the alarm time macro ALARM_TIME_INTERVAL needs to be defined first.

#define ALARM_TIME_INTERVAL (5U)

The following is the RTC initialization configuration code:

void RTC_Config_Init(void)
{

EINT_Config_T EINT_Configure;

/* Enable BKP and PWR clocks */
RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_PMU | RCM_APB1_PERIPH_BAKR);
/* Allow access to the backup domain */
PMU_EnableBackupAccess();
/* Reset backup domain */
BAKPR_Reset();

/* Enable LSI */
RCM_EnableLSI();
/* Wait until LSI is ready */
while(RCM_ReadStatusFlag(RCM_FLAG_LSIRDY) == RESET);
/* Select LSI as the RTC clock source */
RCM_ConfigRTCCLK(RCM_RTCCLK_LSI);
/* Enable RTC clock */
RCM_EnableRTCCLK();

/* Wait for RTC register synchronization */
RTC_WaitForSynchro();
/* Wait for the last write operation on the RTC register to complete */
RTC_WaitForLastTask();
/* Enable RTC alarm interrupt */
RTC_EnableInterrupt(RTC_INT_ALR);
/* Wait for the last write operation on the RTC register to complete */
RTC_WaitForLastTask();

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 7

/* Set the RTC prescaler value: Set the RTC period to 1s */
RTC_ConfigPrescaler(40000);
/* Wait for the last write operation on the RTC register to complete */
RTC_WaitForLastTask();
/* Set the RTC counter value to 0 */
RTC_ConfigCounter(0U);
/* Wait for the last write operation on the RTC register to complete */
RTC_WaitForLastTask();
/* Set the RTC alarm value to 5s */
RTC_ConfigAlarm(ALARM_TIME_INTERVAL);
/* Wait for the last write operation on the RTC register to complete */
RTC_WaitForLastTask();

/* EXTI configuration */
EINT_Reset();
EINT_Configure.line = EINT_LINE_17;
EINT_Configure.lineCmd = ENABLE;
EINT_Configure.mode = EINT_MODE_INTERRUPT;
EINT_Configure.trigger = EINT_TRIGGER_RISING;
EINT_Config(&EINT_Configure);

/* Flag clearing */
RTC_ClearStatusFlag(RTC_FLAG_ALR);
EINT_ClearIntFlag(EINT_LINE_17);

/* NVIC configuration */
NVIC_EnableIRQRequest(RTC_Alarm_IRQn, 1, 1);

}

3.2 RTC alarm interrupt configuration
In the RTC alarm interrupt service function, after detecting the RTC alarm interrupt, we first clear
the alarm flag and the flag of EINT 17, and then reset the RTC counter value and the alarm value
to implement a periodic 5-second alarm. The following is the code for the RTC alarm interrupt
service function:

void RTC_Alarm_IRQHandler(void)
{

if(RTC_ReadIntFlag(RTC_INT_ALR) == SET)
{

/* Clear the RTC alarm and EXTI_Line17 interrupt flags */
RTC_ClearIntFlag(RTC_INT_ALR);
EINT_ClearIntFlag(EINT_LINE_17);

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 8

/* Wait for RTC register synchronization */
RTC_WaitForSynchro();
/* Wait for the last write operation on the RTC register to complete

*/
RTC_WaitForLastTask();
/* Set the RTC counter value to 0 */
RTC_ConfigCounter(0U);

/* Wait for the last write operation on the RTC register to complete
*/

RTC_WaitForLastTask();
/* Set the RTC alarm value to 5s */
RTC_ConfigAlarm(ALARM_TIME_INTERVAL);
/* Wait for the last write operation on the RTC register to complete

*/
RTC_WaitForLastTask();

}

}

3.3 IO configuration before entering the STOP mode
To achieve the lowest power consumption in the STOP mode, it is recommended to configure all
unused I/O ports as analog input mode before entering this mode. The following is the code for
GPIO initialization configuration:

void GPIO_ALL_Init(void)
{

GPIO_Config_T GPIO_Configure;

/* Enable all GPIO clocks */
RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOA | RCM_APB2_PERIPH_GPIOB |

RCM_APB2_PERIPH_GPIOC | RCM_APB2_PERIPH_GPIOD);

/* Configure IO for analog input. To achieve the lowest power consumption in
STOP mode, keep the PA0 interrupt wake-up function */

GPIO_Configure.mode = GPIO_MODE_ANALOG;
GPIO_Configure.pin = GPIO_PIN_ALL&(~GPIO_PIN_0);
GPIO_Config(GPIOA, &GPIO_Configure);

GPIO_Configure.pin = GPIO_PIN_ALL;
GPIO_Config(GPIOB, &GPIO_Configure);
GPIO_Config(GPIOC, &GPIO_Configure);

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 9

GPIO_Config(GPIOD, &GPIO_Configure);

/* Disable all GPIO clocks */
RCM_DisableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOA | RCM_APB2_PERIPH_GPIOB |

RCM_APB2_PERIPH_GPIOC | RCM_APB2_PERIPH_GPIOD);

}

Note: In this example, PA0 is retained as an (optional) interrupt wake-up pin, so it is not configured as an analog input.
(1) After the configuration is completed, the peripheral clock of the GPIO can be disabled to further reduce

power consumption.

3.4 Enter STOP mode
The STOP mode can be entered by calling the library function. The following is the code of the
function to enter the STOP mode:

void System_Enter_StopMode(void)
{

/* Enable PWR clock */
RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_PMU);
/* Clear wake-up flag */
PMU_ClearStatusFlag(PMU_FLAG_WUE);
/* Enter STOP mode */
PMU_EnterSTOPMode(PMU_REGULATOR_LOWPOWER, PMU_STOP_ENTRY_WFI);

}

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 10

4 Function Verification
In the main function, we first initialize the system and peripherals. After a 5-second delay, we call
the relevant function to enter the STOP mode. When the RTC alarm interrupt occurs after 5
seconds, the MCU will be woken up. After being woken up, the program will continue to execute
from the next instruction after entering the STOP mode. The following is the verification code for
the main function:

int main(void)
{

NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_2);

BSP_HSI64_SysclkConfig();
BSP_Systick_Init(64);
BSP_LED_Init(GPIOB, GPIO_PIN_8);
BSP_LED_Init(GPIOB, GPIO_PIN_9);
BSP_KEY2_Init(BUTTON_MODE_EXTI);
BSP_USART1_Init(115200);

printf("SYSCLKFreq = %d\r\n", RCM_ReadSYSCLKFreq());

// Delay for 5 seconds before entering the STANDBY mode to facilitate erasing
and re-downloading of the program during reset

delay_ms(1000);
delay_ms(1000);
delay_ms(1000);
delay_ms(1000);
delay_ms(1000);
printf("After a 5-second delay, enter Stop mode\r\n");
GPIO_ALL_Init();
RTC_Config_Init();
System_Enter_StopMode();

// The clock needs to be reconfigured after waking up
BSP_HSI64_SysclkConfig();
BSP_Systick_Init(64);
BSP_LED_Init(GPIOB, GPIO_PIN_8);
BSP_LED_Init(GPIOB, GPIO_PIN_9);
BSP_KEY2_Init(BUTTON_MODE_EXTI);
BSP_USART1_Init(115200);
printf("Exti Stop mode\r\n");
while (1)

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 11

{
printf("RUNNING\r\n");
delay_ms(200);

}

}

Through the serial port debugging tool, the following printed information can be observed, which
proves that the MCU is successfully woken up after entering the STOP mode for 5 seconds and
continues to execute the program. The following are the results printed by the serial port:

Note:
(1) After waking up from the STOP mode, the system clock will be restored to the internal high-speed clock
(HSI). The system clock and the peripherals that depend on the clock need to be reconfigured.
(2) In the example code, after waking up, the system clock, Systick, LED, buttons, and serial port are
reconfigured, and information is printed in the loop to verify the successful wake-up.

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 12

5 Revision History
Table 5 Document Revision History

Date Version Revision History

August, 2025 1.0 New

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 13

Statement

This manual is formulated and published by Zhuhai Geehy Semiconductor Co., Ltd.

(hereinafter referred to as "Geehy"). The contents in this manual are protected by laws and

regulations of trademark, copyright and software copyright. Geehy reserves the right to correct

and modify this manual at any time. Please read this manual carefully before using the product.

Once you use the product, it means that you (hereinafter referred to as the "users") have known

and accepted all the contents of this manual. Users shall use the product in accordance with

relevant laws and regulations and the requirements of this manual.

1. Ownership of rights

This manual can only be used in combination with chip products and software products of

corresponding models provided by Geehy. Without the prior permission of Geehy, no unit or

individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this

manual for any reason or in any form.

The "Geehy" or "Geehy" words or graphics with "®" or "TM" in this manual are trademarks

of Geehy. Other product or service names displayed on Geehy products are the property of their

respective owners.

2. No intellectual property license

Geehy owns all rights, ownership and intellectual property rights involved in this manual.

Geehy shall not be deemed to grant the license or right of any intellectual property to users

explicitly or implicitly due to the sale and distribution of Geehy products and this manual.

If any third party’s products, services or intellectual property are involved in this manual,

Geehy shall not be deemed to authorize users to use the aforesaid third party’s products,

services or intellectual property, nor shall it be deemed to provide any form of guarantee for

third-party products, services, or intellectual property, including but not limited to any

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 14

non-infringement guarantee for third-party intellectual property, unless otherwise agreed in sales

order or sales contract of Geehy.

3. Version update

Users can obtain the latest manual of the corresponding products when ordering Geehy

products.

If the contents in this manual are inconsistent with Geehy products, the agreement in Geehy

sales order or sales contract shall prevail.

4. Information reliability

The relevant data in this manual are obtained from batch test by Geehy Laboratory or

cooperative third-party testing organization. However, clerical errors in correction or errors

caused by differences in testing environment are unavoidable. Therefore, users should

understand that Geehy does not bear any responsibility for such errors that may occur in this

manual. The relevant data in this manual are only used to guide users as performance

parameter reference and do not constitute Geehy's guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively

verify and test the applicability of Geehy products to confirm that Geehy products meet their own

needs, corresponding standards, safety or other reliability requirements. If losses are caused to

users due to the user's failure to fully verify and test Geehy products, Geehy will not bear any

responsibility.

5. Compliance requirements

Users shall abide by all applicable local laws and regulations when using this manual and

the matching Geehy products. Users shall understand that the products may be restricted by the

export, re-export or other laws of the countries of the product suppliers, Geehy, Geehy

distributors and users. Users (on behalf of itself, subsidiaries and affiliated enterprises) shall

agree and undertake to abide by all applicable laws and regulations on the export and re-export

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 15

of Geehy products and/or technologies and direct products.

6. Disclaimer

This manual is provided by Geehy on an "as is" basis. To the extent permitted by applicable

laws, Geehy does not provide any form of express or implied warranty, including without

limitation the warranty of product merchantability and applicability of specific purposes.

Geehy products are not designed, authorized, or guaranteed to be suitable for use as

critical components in military, life support, pollution control, or hazardous substance

management systems, nor are they designed, authorized, or guaranteed to be suitable for

applications that may cause injury, death, property, or environmental damage in case of product

failure or malfunction.

If the product is not labeled as "Automotive grade", it means it is not suitable for automotive

applications. If the user's application of the product is beyond the specifications, application

fields, and standards provided by Geehy, Geehy will assume no responsibility.

Users shall ensure that their application of the product complies with relevant standards,

and the requirements of functional safety, information security, and environmental standards.

Users are fully responsible for their selection and use of Geehy products. Geehy will bear no

responsibility for any disputes arising from the subsequent design and use of Geehy products by

users.

7. Limitation of liability

In any case, unless required by applicable laws or agreed in writing, Geehy and/or any third

party providing this manual and the products on an "as is" basis shall not be liable for damages,

including any general or special direct, indirect or collateral damages arising from the use or no

use of this manual and the products (including without limitation data loss or inaccuracy, or

losses suffered by users or third parties), which cover damage to personal safety, property, or

environment, for which Geehy will not be responsible.

http://www.geehy.com

Document No.: AN1162

www.geehy.com Page 16

8. Scope of application

The information in this manual replaces the information provided in all previous versions of

the manual.

©2025 Zhuhai Geehy Semiconductor Co., Ltd. All Rights Reserved

http://www.geehy.com

	1Introduction
	2Introduction to Low-power Mode
	2.1SLEEP mode
	2.2STOP mode
	2.3STANDBY mode

	3Implementation of RTC Timed Wake-up for STOP Mode
	3.1RTC alarm configuration
	3.2RTC alarm interrupt configuration
	3.3IO configuration before entering the STOP mode
	3.4Enter STOP mode

	4Function Verification
	5Revision History

